HEDONIC MODELS

OF LOCATION DECISIONS

WITH APPLICATIONS

TO GEOSPATIAL MICRO-DATA

Rosa L. Matzkin (Northwestern University)
Luc Anselin (University of Illinois)
Gale A. Boyd (Argonne National Laboratory)
James J. Heckman (University of Chicago)
Lars P. Nesheim (Argonne National
Laboratory)

HEDONIC EQUILIBRIUM

z vector of characteristics of a house

 $f_S(z)$ density of houses with characteristics z

w household income

 x, ε characteristics of the household

P(z) price of a house with characteristics z

 $U(w-P(z),z,x,\varepsilon)$ utility of a household obtains from living in a house of type z

 $f_{w,x}(w,x) f_{\varepsilon}(\varepsilon)$ density of household characteristics

$$Economy = (f_{w,x}, f_{\varepsilon}, f_z, U)$$

Given P(z), household with characteristics (w, x, ε) chooses $z = d(w, x, \varepsilon)$ that maximize $U(w - P(z), z, x, \varepsilon)$.

P(z) is determined by the equilibrium condition

$$= \int_{w,x} f_x(w,x) f_{\varepsilon}(d^{-1}(w,x,z)) \left| \frac{\partial d^{-1}(w,x,z)}{\partial z} \right| dw dz$$

Using data on P(z), $f_x(w, x)$, $f_z(z)$, and chosen z's, we can estimate U and f_{ε} .

These can be used to study the impact of changing technologies, demographics, and government policies by solving for the new P(z) and z's.

DATA:

- · American Housing Survey (AHS)
- · National Educational Longitudinal Survey (NELS)
- · Longitudinal Business Database (LBD)
- · Longitudinal Employer Household Dynamics Database (LEHD)